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ESTIMATION OF THE PARAMETERS OF MECHANOTROPIC GELATION IN 

WET SPINNING OF FIBRES 

A. L. Kalabin* and E. A. Pakshver** 

A mathematical analytical model of stretching of a jet of polymer solution was 

constructed. Estimations of the total mechanotropic gelation time, longitudinal 

rate, and rate gradient were obtained. It was shown that the order of the total 

gelation time for such a process in the system considered is within the limits of 

1-10 sec. 

The existence of phase transitions is one problem in the physical chemistry of polymer 

materials. Specific aspects of phase transitions in polymer systems are most completely 

presented in [1-3]. In our opinion, the applied aspect of phase equilibrium in gelation in 

solution of macromolecules in "wet" spinning of chemical fibres is important. 

The reaction of the components in a solution and phase transitions into a gel are a 

function of a series of factors - concentration, temperature, external pressure, mechanical 

stress, composition of the solvent, pH, electric field [4, 5]. The kinetics of attaining the state 

of phase equilibrium to a significant degree determines the structure and physicomechanical 

properties of the gel. The gel phase in turn is the primary structure of the fibre which greatly 

determines its properties. The further investigation of gelation from polymer solutions is 

pressing. 

We will define gelation as the phase transition of a polymer from liquid phase to gel 

when the external conditions change. This transition can be represented as the movement of a 

point reflecting the state of the system in multidimensional space whose axes are the quantities 

indicated above. This movement takes place from an initial point to the surface (in the plane-

curve) of liquid-gel phase equilibrium of the polymer to which the phase diagram of the system 

corresponds. In this case, the external parameters correspond to the transition point, and their 

values are considered transitional. 

We know that a gel can be formed under the effect of a mechanical field [4-7]. However, 



the use of this effect explicitly is not known in industrial practice of processing isotropic 

solutions. It hypothetically takes place in spinning of systems capable of forming liquid-

crystalline solutions [8]. The experiments we conducted with concentrated solutions of 

polyacrylonitrile in dimethylformamide cross-linked with cobalt and nickel salts showed that 

solidification of such a solution is possible under the effect of mechanical (tensile) force. A gel 

fibre is formed, coated with droplets of solvent separated from it as a result of syneresis. 

The goal of the present study was to create an analytical model of stretching of the 

polymer solution jet to obtain estimations of the parameters of mechanotropic gelation in wet 

spinning of chemical fibres. 

In elaborating the mathematical model, the following assumptions were made about the 

gelation process: 

 - the equation of movement of the jet is unidimensional, obtained in the assumption that 

the distribution of the axial velocity over the cross section of the jet is homogeneous; the basic 

assumptions in the theory of motion of a thin jet are given 

in [2]; 

 - for movement of the polymer solution jet, the contribution of gravity and the surface 

tension force can be neglected; 

 - the initial point of description of the process x = 0 corresponds to the maximum radius of 

the jet in its expansion after coming out of the channel; the Barus effect is not considered in the 

examination. 
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Fig. 1.  Jet velocity v(x) vs. x.  Curve;  calculation with the model; points: experimental data in [9]. 

The current gel thickness can be determined from the transcendental equation [9] 



C[R(r),t] = Cch[T(r,t), v’(r,t)],                                                (1) 

where C[R(r),t] is the concentration of precipitator in the polymer solution jet; Cch ; is the 

concentration of precipitator at the time of the phase transition at temperature T and longitudinal 

velocity gradient v’ ; the value of C ch is determined from the three-dimensional phase diagram 

of the polymer-solvent-precipitator system; r is a coordinate directed along the radius of the jet; r 

is  the time. 

This equation is solved relative to R = R(t), the coordinates of the gelation front. 

In examining thermotropic spinning [10], Eq. (1) is transformed, becoming 

     T[R,t] = Tch =const,                                                      (2) 

where Tch , is the temperature of the system at the time of the phase transition for constant 

values of the concentrations of precipitator and polymer and the longitudinal velocity 

gradient. 

By analogy, we can hypothesize that in examining mechanotropic spinning, Eq. (1) is 

transformed into an equation of the form 

  v' [R,t] = v'ch= const,                                                      (3) 

where v'ch is the longitudinal velocity gradient of the solution at the time of the phase transition 

for a defined concentration and temperature of precipitator and polymer. 

For describing the mechanical field that arises in steady-state stretching of the polymer 

solution jet in phase separation in it, we will use the well-known approach based on the balance of 

forces acting on the jet; according to [2] and the assumptions used, it is 

Frh(x) = Frh(0)+ Fin(x) + Fgd(x),                                              (4) 

where the forces are Fch(x) - rheological, Fin(x) - inertial, Fgd(x) - hydrodynamic friction force 

between jet and medium; x is the coordinate in the direction of movement. 

Our previously proposed [9] system of equations allows simultaneously calculating both 

the kinematics and dynamics of movement of the jet with consideration of the rheological 

properties of each phase and phase separation with consideration of the biphasic laminar 

structure and mobility of the phase boundaries. For studying mechanotropic gelation, we will 

use the assumption concerning the constancy of the tensile stress of the fibre 

Frh (x) = F = const.                                                       (5) 

It is shown in [9,11] that the quantity Frh(x) varies within the range of 0 to 40 µN before 



gelation begins so that we will define F = const as the average value in this range: 

F = SPxx = ŋSv'(x),                                                              (6) 

Where Pxx = ŋv'(x) is the expansion stress of the solution; S = π R2 is the area of the section of 

the jet; G = Spv is the steady-state continuity equation, or g = Sv; g is the mass and volume 

consumption of solution; p is the density of the polymer solution; ŋ is the longitudinal 

dynamic viscosity. 

We obtain the ordinary differential equation 
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1                                                                    (7) 

whose solution, considering initial condition v0 = v(0), is 

 

v(x) = voexp(βx)                                                              (8) 

for   

                                       β= F ρ /(Gŋ)= F/(gŋ)                                                        (9)    

 

Then the relation for the longitudinal velocity gradient becomes 

 

v’ (x)= v0 βexp (βx)                                                 (10) 

The complete gelation time tm is a fundamental parameter of the gelation process in wet 

spinning. This is the time after which the gelation process has taken place over the entire radius 

to the center of the jet. Using this quantity, the length of the fibre path in the spinning bath can 

be estimated in spinning fibres of different linear density at different speeds. 

For estimating tm, we obtain a relation from determining the velocity v = dx/dt, from which it 

follows that t(x) = dx/v(x), or substituting Eq. (8): ∫
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= [l-exp(-β xo)]/ β v0                                                          (11) 

where x0 is the value of the coordinate corresponding to the value of v' at which a phase 

transition is possible with the other parameters in the system being fixed. 

The values of the parameters from [11, 12], in which spinning of poly-(p-phenylene-l,3,4-

oxadiazole) (POD) fibres into aqueous solution of sulfuric acid was examined, were used for 



numerical modeling with the proposed model. The experiment was conducted with the 

following values of the quantities [11]: volume flow rate of spinning solution of g= 3.2*10-10 

m3/sec; initial longitudinal velocity of v0 = 5*10-3 m/sec; p1= 1840 kg/m3 is the density of 

sulfuric acid; p2= 1430 kg/m3 is the density of POD; p3 is the density of the polymer solution, 

calculated from the relation ps =0.053p2 + 0.947p1 = 1820 kg/m3. The rheological 

characteristics for the examined case of spinning fibres from POD solution are reported in [12]. 

The value of ŋ = 320 Pa*sec was used in the calculations. We will define the average value of 

Frh(x) from [11] as F = 20 µ N. 

The calculated and experimental data of the jet velocity v(x) as a function of x are shown 

in Fig. 1 for comparison. 

We give the following numerical estimations for verifying the validity of the proposed 

calculation of the total gelation time based on Eqs. (8)-(l 1). We obtain the value of coefficient 

calcβ = 24 m-1 from calculated Eq. (9). For comparison with the experimental data, from Eq. 

(10) we obtain 

β exp = ln[v(x0)/v0]/x0   ,                                                                 (12) 

which, for x0 = 0.08 m and corresponding v(x0) = 0.04 m/sec, gives the experimental value of 

β exp =26 m-1. The difference is less than 8%. 

We obtain the estimation of tm(x0) with Eq. (11) for v(x0) = 0.04 m/sec and v'(x0) =1.7 sec-', 

equal to tm  =7.8 sec. The tensile stress is then 

Pxx(x0)=η v’(x0)≈  544 Pa                                                   (13) 

The analysis of Eq. (11) shows that the maximum value of the total gelation time as x0->∞ will 

be: 

 

tm=
0v

1
β

= 8.3 sec.                                                         (14) 
 

It follows from the same expression that the approximate value of coordinate x0 for the case 

examined can be determined from the condition exp(-β x0) = 0, which is satisfied for βx0 ≈3 

with an error of less than 5%. Then 

xo=3/ β = 0.12m.                                                     (15) 

In view of the assumptions on the gelation process used in this article, X0 can be estimated 



from Eq. (10), i.e., the value of the coordinate corresponding to v’ at which a phase transition is 

possible in the system: 

x0=ln[v'(x0)/ β v0]/ β                                                (16) 

It follows from the assumption concerning the homogeneous distribution of the axial 

velocity over the cross section of the jet that the curve of the thickness of the solidified polymer 

as a function of time will have qualitatively the same shape for thermotropic and mechanotropic 

gelation. 
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